Skip to main content

Explain it Like I'm 5: OAuth2 & UMA

This entry is the first in a mini-series, where I will attempt to explain some relatively complex terms and flows in the identity and access management space, in a way a 5 year could understand.

Hopefully...

First up is OAuth2 and User Managed Access or UMA, a powerful federated authorization flow that sits on top of OAuth2.

Explain it like I’m 5: OAuth2

OAuth2 allows people to share data and things with other services that can access that data on their behalf.  For example, an individual might want to allow a photo printing service access to a few pictures from an album stored on a picture hosting service.

Explain it like I’m 5: Resource Server

The resource server is the service or application that holds the data or object that needs sharing.  For example, this could be the picture hosting site that stores the taken pictures.

Explain it like I’m 5: Resource Owner

The resource owner is the person who has the say on who can retrieve data from the resource server.  For example, this could be the user who took the pictures and uploaded them to the hosting service.

Explain it like I’m 5: Authorization Server

The authorization server is the security system that allows the resource owner to grant access to the data or objects stored on the resource server to the application or service.  In continuing the example of the picture hosting, it’s likely the hosting service itself would be the authorization server.

Explain it like I’m 5: Client

The client is the application that wants to gain access to the data on the resource server.  So in the continuing example, the the picture printing service would be the client.

Explain it like I’m 5: UMA

UMA allows the sharing of feed of data to multiple different 3rd parties, all from different places.  
For example, wanting to share pictures with not only 3rd party services to act on the resource owner’s behalf, but also to other trusted individuals, who can perhaps store those pictures in their store and print them using their own printing service selection.

Comments

Popular posts from this blog

WebAuthn Authentication in AM 6.5

ForgeRock AccessManagement 6.5 , will have out of the box integration for the W3C WebAuthn . This modern “FIDO2” standard allows cryptographic passwordless authentication – integrating with a range of native authenticators, from USB keys to fingerprint and facial recognition systems found natively in many mobile and desktop operating systems. Why is this so cool? Well firstly we know passwords are insecure and deliver a poor user experience. But aren’t there loads of strong MFA solutions out there already? Well, there are, but many are proprietary, require complex integrations and SDK’s and ultimately, don’t provide the level of agility that many CISO’s and application designers now require.  Rolling out a secure authentication system today, will probably only result in further integration costs and headaches tomorrow, when the next “cool” login method emerges. Having a standards based approach, allows for easier inter-operability and a more agile platform for chan

Implementing Zero Trust & CARTA within AM 6.x

There is an increasing focus on perimeterless approaches to security design and the buzzy "defensive security architectures".  This blog will take a brief look at implementing a contextual and continuous approach to access management, that can help to fulfil those design aspirations. The main concept, is to basically collect some sort of contextual data at login time, and again at resource access time - and basically look for differences between the two.  But why is this remotely interesting?  Firstly, big walls, don't necessarily mean safer houses.  The classic firewall approach to security.  Keeping the bad out and the good in.  That concept no longer works for the large modern enterprise.  The good and bad are everywhere and access control decisions should really be based on data above and beyond that directly related to the user identity, with enforcement as close as possible to the protected resource as possible. With Intelligent AuthX, we can start to collect an

Set Session Limits Using Context

Session limits typically cover 4 main items: total number of sessions a user can have at any one time, the max length of each session, the max idle time and max caching time. In an out of the box deployment in ForgeRock AM, these settings are configured via the session service.  However there are few tweaks than can be made to allow these settings to be run via a per user or per tree flow.  For example. think of the following scenario - user is logging via a device, location or network that has a higher risk rating.   Perhaps you would like to reduce session length on a BYOD device running an out of support version of Android to have a length of only 15 minutes.  If they switched back to their main trusted device, we can spin that back to 1hr. Another example, could be the spotting of a higher suspicion of bot activity for a particular user.  Maybe we need to set the entire quota limit to 1, to stop a bot spawning multiple sessions with the same credentials. This is all pretty trivial